Methodist Journal

IN THIS ISSUE

Nutritional Supplements and the Heart

Vol 15, Issue 3 (2019)


FEATURED GUEST EDITOR

ISSUE INTRO

Dietary Supplements: Facts and Fallacies

See More
RECOGNITIONS

Drs. Raizner and Cooke Take the Lead in Special Issue on Supplements

See More

REVIEW ARTICLES See More

Recent Clinical Trials Shed New Light on the Cardiovascular Benefits of Omega-3 Fatty Acids

Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment

Coenzyme Q10

Red Yeast Rice for Hypercholesterolemia

Inorganic Nitrate Supplementation for Cardiovascular Health

Vitamin D and Calcium Supplements: Helpful, Harmful, or Neutral for Cardiovascular Risk?

Cardiovascular Risk of Proton Pump Inhibitors

Advanced Cardiac Imaging for Complex Adult Congenital Heart Diseases

CASE REPORTS See More

A Rare Case of Pancreatitis-Induced Thrombosis of the Aorta and Superior Mesenteric Artery

Anomalous Origin of the Right Coronary Artery from the Left Main Coronary Artery in the Setting of Critical Bicuspid Aortic Valve Stenosis

Simultaneous Transfemoral Mitral and Tricuspid Valve in Ring Implantation: First Case Report with Edwards Sapien 3 Valve

Uneventful Follow-Up 2 Years after Endovascular Treatment of a High Flow Iatrogenic Aortocaval Fistula Causing Pulmonary Hypertension and Right Heart Failure

MUSEUM OF HMH MULTIMODALITY IMAGING CENTER See More

Snoopy’s Heart: A Case of Complete Congenital Absence of the Pericardium

CLINICAL PERSPECTIVES See More

POINTS TO REMEMBER

Herbal Nephropathy

EXCERPTA

Rolling the Dice on Red Yeast Rice

POINTS TO REMEMBER

The Kidney in Congenital Cyanotic Heart Disease

EXCERPTA

Talking Statins with Antonio Gotto

EDITORIALS

Letter to the Editor in Response to “Cardiac Autonomic Neuropathy in Diabetes Mellitus”

Vol 15, Issue 3 (2019)

Article Dialogue

Recent Clinical Trials Shed New Light on the Cardiovascular Benefits of Omega-3 Fatty Acids

Jump to:
Article Citation:

Penny M. Kris-Etherton, PhD, RDN, et al. Nucleic Acid Delivery for Endothelial Dysfunction in Cardiovascular Diseases. Methodist DeBakey Cardiovascular Journal. 2019;15(3):166-236.



Abstract

Three recent clinical trials have demonstrated the benefits of marine omega-3 fatty acids on cardiovascular disease end points. In the Vitamin D and Omega-3 Trial (VITAL), 840 mg/d of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) resulted in a 28% reduced risk for heart attacks, 50% reduced risk for fatal heart attacks, and 17% reduced risk for total coronary heart disease events. In the ASCEND trial (A Study of Cardiovascular Events in Diabetes), cardiovascular disease death was significantly reduced by 19% with 840 mg/d of EPA and DHA. However, the primary composite end points were not significantly reduced in either study. In REDUCE-IT (the Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial), there was a 25% decrease in the primary end point of major cardiovascular events with 4 g/d EPA (icosapent ethyl) in patients with elevated triglycerides (135-499 mg/dL) who also were taking a statin drug. For clinical practice, we now have compelling evidence of the cardiovascular benefits of omega-3 fatty acids. The findings of REDUCE-IT provide a strong rationale for prescribing icosapent ethyl for patients with hypertriglyceridemia who are on a statin. For primary prevention, the goal is to increase the population intake of omega-3 fatty acids to levels currently recommended, which translates to consuming at least one to two servings of fish/seafood per week. For individuals who prefer taking omega-3 fatty acid supplements, recent findings from clinical trials support the benefits for primary prevention.

Keywords

eicosapentaenoic acid, EPA, docosahexaenoic acid, DHA, omega-3 fatty acids

INTRODUCTION

Recommendations from 2002 about long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for the primary and secondary prevention of cardiovascular disease (CVD) have been tempered by more recent clinical studies that did not show CVD benefits.1,2 Herein, we briefly describe why the latter studies may have shown no benefit3 and review three very recent major clinical trials that did show CVD benefits of omega-3 fatty acids. These studies included healthy individuals, patients with diabetes, and patients with mildly elevated triglycerides taking statin drugs.46 We also describe possible mechanisms that explain the cardiovascular benefits of omega-3 fatty acids, define current long-chain omega-3 fatty acid intakes, and advise clinicians about what can be done in practice to first determine and then optimize the omega-3 fatty acid intake for their patients.

RECENT STUDIES SHOWING BENEFITS OF OMEGA-3 FATTY ACIDS FOR PRIMARY AND SECONDARY PREVENTION OF CVD

Vitamin D and Omega-3 Trial (VITAL)

The Vitamin D and Omega-3 Trial (VITAL) is the largest, most ethnically diverse omega-3 randomized controlled trial (RCT) focused on primary prevention.4 VITAL assigned more than 25,000 people to either 1 g/d of omega-3 acid ethyl esters (O3AEE; providing 840 mg EPA and DHA), 2,000 IU of vitamin D3 (generic cholecalciferol), both O3AEE and vitamin D3, or dual placebo for approximately 5 years (Table 1).4-6 The goal was to investigate whether O3AEE and/or vitamin D could reduce the risk for cancer, heart disease, and stroke in people who do not have a prior history of these illnesses. O3AEE was the first omega-3 “drug” approved by the US Food and Drug Administration (FDA) and has been available by prescription for several years, but only for the treatment of very high triglycerides (TG).

In VITAL, O3AEE demonstrated no benefit for cancer outcomes compared to placebo, nor did it significantly reduce major CV events, which was the trial’s primary outcome. Accordingly, the authors concluded that “supplementation with n –3 fatty acids did not result in a lower incidence of major CV events or cancer than placebo,” which was widely reported in the press. However, there were several statistically significant effects on prespecified secondary outcomes worth noting, including a 28% reduced risk for heart attacks, 50% reduced risk for fatal heart attacks, and 17% reduced risk for total coronary heart disease events.4 These effects were most pronounced in people with low fish intake (below the median of 1.5 servings per week) and African Americans. For heart attacks specifically, those with low fish intake who were in the O3AEE group experienced a significant 19% reduction in the primary end point, whereas there was no reduction for individuals with higher baseline fish intake. For African Americans, there was a significant 77% reduction in heart attacks in the O3AEE group, a 49% reduction in the need for coronary revascularization, and a 53% reduction in total coronary heart disease.

However, VITAL was considered a “null” study because the primary end point of composite major CV events was not significantly reduced (8% reduction, 95% CI, -20% to 6%). The primary end point was unaffected because it was a combination of three CV outcomes, including two that were not reduced by O3AEE treatment (total stroke and death from CVD) and one that was (total myocardial infarction). Thus, pooling them together produced an overall null effect. But should a failure to reduce the risk for stroke and death from CVD nullify the success in reducing rates of myocardial infarction (MI)? In our view, the problem is the convention requiring that the success or failure of a trial depends completely on the effect of the intervention on only one prespecified primary end point—to the exclusion of all other findings. In the case of VITAL, had total MI or coronary heart disease (CHD) been the predefined end point (which would have been reasonable given the long history of demonstrated benefits of omega-3s in CVD, but which could not have been confidently foreseen when the trial was being designed), the findings of the study would have been positive. It is true that one cannot go on a fishing expedition for effects with significant P values in such trials, but the finding of an effect on total CHD or MI should not be considered unexpected or exploratory in VITAL. Thus, despite the published conclusions and subsequent reporting in the media, we contend that this is a positive trial for omega-3 s, especially given the relatively low dose of EPA and DHA used (< 1 g/d), the fairly short follow-up period, and the focus on primary prevention.

A Study of Cardiovascular Events in Diabetes (ASCEND)

ASCEND was a 7-year RCT in the United Kingdom that tested the effects of EPA, DHA, and aspirin on CVD events in 15,480 patients with diabetes and no diagnosis of CVD (Table 1).5 The omega-3 product and dose were the same as in VITAL4—one capsule per day of O3AEE—and the placebo was a 1-gram capsule of olive oil. The effects of aspirin in this population were reported in a separate publication and can be summarized as reduced risk for CVD counterbalanced by an increased risk for major bleeding.7 ASCEND also was considered a null omega-3 trial because the primary end point—again, a composite of risk for nonfatal MI, nonfatal stroke, transient ischemic attacks, and “vascular death” (including fatal CHD, fatal stroke, and death from other “vascular” causes, in other words, CVD death)—was only 3% lower in the omega-3 group and did not achieve statistical significance. However, as in VITAL, some components were affected and others were not. There was no effect of EPA and DHA on the first three outcomes, but CVD death was significantly reduced by 19%. This important benefit was largely overlooked in the publication, which concluded that their findings did not support the current recommendations for routine dietary supplementation with omega-3 fatty acids to prevent vascular events in patients with diabetes.5 As with VITAL, we take exception to this conclusion since the omega-3 fatty acids clearly provided an important benefit. The reduction in total CVD deaths should not be dismissed simply because this relatively low dose of omega-3 fatty acids did not reduce the risk for all possible CVD end points. In fact, a reduced risk of CV death tends to be the common denominator in most large studies of omega-3 supplementation.8,9

Table 1. Comparison of three major trials of omega-3 fatty acids reported in 2018. ASCEND: A Study of Cardiovascular Events in Diabetes; VITAL: Vitamin D and Omega-3 Trial; REDUCE-IT (the Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial; CVD: cardiovascular disease; TG: triglycerides; EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; CHD: coronary heart disease; ALA: alpha-linolenic acid

Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial (REDUCE-IT)

As opposed to VITAL and ASCEND, REDUCE-IT used icosapent ethyl (IPE; brand name Vascepa, Amarin Corporation), which is EPA in ethyl ester form. Vascepa was the second FDA-approved omega-3 drug indicated for TG lowering.6 It differs from O3AEE that contain both EPA and DHA in the ethyl ester form.

REDUCE-IT was designed to investigate whether IPE combined with statin therapy was superior to statin therapy alone when used to prevent long-term CV events in high-risk patients with mixed dyslipidemia. Over 8,000 patients at increased risk of CVD were followed for approximately 5 years (Table 1). Participants were required to have TG levels of 135 to 499 mg/dL as well as known CVD or diabetes and at least one other CV risk factor. Average low-density lipoprotein cholesterol was ~75 mg/dL (on statins) and average TG levels were ~216 mg/dL (normal is < 100 mg/dL). Participants were randomized to either 4 g/d IPE or a placebo.

IPE significantly reduced CV events by 25%. The following outcomes were also significantly reduced with IPE treatment:

  • CV death, heart attack, or stroke in the secondary prevention population: 28% (P < .001)
  • CV death or nonfatal heart attack: 26% (P < .001)
  • Fatal or nonfatal heart attack: 31% (P < .001)
  • Urgent or emergent revascularization: 35% (P < .001)
  • CV death: 20% (P < .03)
  • Hospitalization or unstable angina: 32% (P < .002)
  • Fatal or nonfatal stroke: 28% (P < .01)
  • Total mortality, nonfatal heart attack, or nonfatal stroke: 23% (P < .001)

Comparatively, IPE was a more effective add-on agent to statins for reducing adverse CVD outcomes in REDUCE-IT than virtually every hypolipidemic drug tested in the last 12 years, including but not limited to: evolocumab, alirocumab, ezetimibe, niacin, torcetrapib, anacetrapib, and evacetrapib.10-16 Additionally, it was safer and had fewer side effects than any of these other drugs. This is a strong refutation of the view that “fish oil does not work”—a conclusion that is based on studies providing approximately a quarter of the omega-3 dose used here.3,17 The fact that the 4 g/d dose of EPA in REDUCE-IT was remarkably effective strongly reinforces that dose is an important consideration. The outcomes from a larger study with a similar design as REDUCE-IT, the Statin Residual Risk Reduction with Epanova in High Cardiovascular Risk Patients with Hypertriglyceridemia (STRENGTH) trial, which is using 4 g/day of EPA and DHA (as free fatty acids), are expected in late 2020 will help to clarify this.18

WHY DID PREVIOUS OMEGA-3 STUDIES FAIL?

Many trials have been conducted to assess the effects of long-chain omega-3 fatty acids on CV end points. Studies published prior to 2018 are described in Table 2.19-30 In general, early trials—including DART, GISSI-P, JELIS, and GISSI-HF—reported beneficial effects on CV outcomes,21-23 whereas more recent trials, such as Alpha Omega, OMEGA, SU.FOL.OM3, ORIGIN, AREDS2, and R&P, reported neutral effects.24-27,30 This discrepancy may be attributed to methodological limitations of later trials that biased results toward the null and confounded the interpretation of results. The limitations include short intervention duration, lengthy event-to-enrollment interval in secondary prevention, low omega-3 dose, and high background fish intake.3 In addition, three trials had insufficient statistical power due to lower-than-anticipated event rates, likely due to advancements in standard of care.25,26,28 For example, in GISSI-P, only 5% of participants at baseline and 45% of participants at follow-up used cholesterol-lowering medications, whereas approximately 85% of participants in both Alpha Omega and SU.FOL.OM3 used lipid-lowering agents.21,24,26 Although it is possible that < 1 g/d of omega-3 fatty acids does not add to the risk reduction provided by modern, state-of-the-art CV pharmacotherapy, the results of ASCEND and VITAL suggest that they may provide additional benefit.

Table 2. Study design and primary results from clinical trials assessing the effects of long-chain omega-3 fatty acid interventions on cardiovascular disease events. CV: cardiovascular; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; MI: myocardial infarction; CVD: cardiovascular disease
Table 2 (cont.). Study design and primary results from clinical trials assessing the effects of long-chain omega-3 fatty acid interventions on cardiovascular disease events. CV: cardiovascular; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; MI: myocardial infarction; CVD: cardiovascular disease

EFFECTS ON LIPIDS/LIPOPROTEINS AND OTHER POTENTIAL MECHANISMS OF ACTION

One mechanism for improved CVD outcomes are effects on lipids and lipoproteins. Omega-3 fatty acids have well-established TG-lowering effects and effects on other lipoproteins based on dose and pretreatment lipid/lipoprotein concentrations.31,32 For example, they are effective at reducing elevated TG at a prescription dose of 4 g/d, the same dose administered in REDUCE-IT to patients with TG levels of 135/150-500 mg/dL.6 In patients with this degree of TG elevation, a 20% to 30% reduction in fasting values is typical and often accompanied by small reductions in non–high-density lipoprotein cholesterol and apolipoprotein B. Cotreatment with a statin does not appear to influence the degree of TG reduction achieved by omega-3 fatty acids, although this has not been thoroughly evaluated. In people with very high TG (? 500 mg/dL), 4 g/d prescription O3AEE or IPE is indicated to reduce the risk of pancreatitis and also results in TG reductions > 30%. The dearth of studies directly comparing prescription omega-3 fatty acids (ie, O3AEE and IPE) precludes any firm conclusions regarding the comparative effects of these agents on TG as well as other lipids and lipoproteins. Studies evaluating 2 g/d versus 4 g/d of prescription omega-3 fatty acids found that the lower dose provided roughly one-half the TG-lowering efficacy, which in some cases was not significantly different from placebo.33-36 In people with fasting TG < 150 mg/dL, reductions in TG may not be apparent, even at these higher doses. The ~1 g/d dose used in many RCTs is not effective for reduction of TG but is likely to impact other risk pathways discussed below.37

Other potential mechanisms by which omega-3 fatty acids reduce CVD risk may be apparent at lower doses. Omega-3 fatty acids affect interrelated risk pathways including arrhythmia, coagulation, vascular health, blood pressure, plaque stability, and inflammation.2,38,39 A rich and growing area of research continues to elaborate how omega-3 fatty acids can affect these physiological processes, including relatively recent discoveries of an expanding universe of oxygenated metabolites of EPA and DHA termed oxylipins and specialized pro-resolving lipid mediators.40 For example, a hydroxylated product of EPA, 18-HEPE, has been shown to reduce fibrotic remodeling of the heart.41 These risk pathways may be more responsive in people with very low dietary intakes and tissues stores, as evidenced by the VITAL study finding of greater risk reduction for people with below-median fish intake (< 1.5 serving/wk).4 In summary, omega-3 fatty acids dose-dependently influence multiple CVD risk pathways.

CURRENT INTAKES OF OMEGA-3 FATTY ACIDS

EPA and DHA intake vary considerably among different countries and populations, as reviewed by Richter et al.42 For instance, intake is relatively high in Japan (~1.3-2.5 g/d) and in Greenland Inuits (~ 4.5-10.5% of total fatty acids, at least in the 1970s) because of their reliance on whale, seal, and fish meat. Conversely, in the United States, Australia, Belgium, Germany, the United Kingdom, and Canada, average daily intake falls far short of the recommendation for CVD prevention (~ 500 mg/d EPA/DHA), with intakes approximating 100 to 290 mg/d or less. In the United States, the National Health and Nutrition Examination Survey (NHANES) has consistently shown a low intake. For example, over the 2003-2014 NHANES survey cycles, the mean intake of EPA, DHA, and EPA plus DHA from foods was 33 mg/d, 64 mg/d, and 97 mg/d, respectively, and previous analyses of NHANES data have reported similarly low dietary intakes.43 Use of EPA/DHA supplements significantly increase total EPA and DHA intake, but use of these supplements in the United States is low.43,44 Evidence also suggests that EPA and DHA intake may be particularly low in specific segments of the population, such as children/adolescents, pregnant women and/or women of childbearing age, and certain ethnicities.43,44 The primary food sources of omega-3 fatty acids are oily fish/shellfish. However, it should be noted that the omega-3 content of fish varies by species and can also be influenced by the fish’s diet, whether wild-caught or farm raised. In general, the best sources of omega-3 fatty acids are salmon, herring, anchovies, sardines, and rainbow trout.42 Compared to oily fish, white fish such as tilapia tend to be much lower in omega-3 content.

HOW CAN CLINICIANS ASSESS OMEGA-3 STATUS IN THEIR PATIENTS?

Although a preliminary estimate of omega-3 status could be made by assessing the patient’s dietary intake of foods high in omega-3 fatty acids, a direct assessment can be obtained by measuring the Omega-3 Index (O3I). This is a blood test that reports the proportion of EPA and DHA in red blood cell membrane fatty acids (as a percent of total fatty acids). The O3I is an evidence-based marker of EPA and DHA intake as well as CVD risk.45,46 For CVD risk, a target range of 8% to 12% was proposed in 2004 for reduced risk of primary cardiac death, and subsequent research has confirmed this target as clinically relevant.47,48

Relative to assessing dietary intake, Jackson et al. recently published associations between the O3I and reported intake of fish and supplements in 3,458 individuals.45 On average, the O3I increased in a dose-dependent manner with increasing frequency of fish intake (approximately 0.5 percentage points per increase in frequency of fish meals/wk) and was 2.2 percentage points higher in individuals who reported using supplements. However, over 80% of the study population had an O3I less than 8%, and those following the American Heart Association (AHA) recommendation of two fish meals per week without supplement use had an average O3I of 5.8% ±  1.5%.49 It should be noted that in those achieving the AHA recommendation, the O3I range was 3.3% to 11.4%, which spans the full high-to-low risk spectrum. Thus, in individual patient care, testing omega-3 status is preferred to estimating intakes based on dietary assessments. Since the O3I is a red blood cell-based marker, it only needs to be tested every 4 to 6 months and can be measured in either red blood cells (from anticoagulated whole blood) or a dried blood spot using antioxidant-treated filter paper. The O3I cannot be ascertained from a plasma essential fatty acid panel.

SUMMARY

Over the last 25 years, the sands have shifted regarding the effects of marine omega-3 fatty acids on CVD. After the benefits found in earlier studies were not confirmed in subsequent trials, questions were raised about the recommendation to consume omega-3 fatty acids to reduce CVD risk. However, the trial results released in the last 12 months have again upended conventional wisdom. For the general population and those with diabetes, about 1 g/d of omega-3 fatty acids reduced the risk of both death from CVD and having an MI. For those with high TG who take statins, 4 g/d of EPA dramatically reduced the risk for several CVD outcomes, including CV death. As previously noted, the dose of omega-3 fatty acids is likely a main factor in whether significant effects are observed. Collectively, we are at a point where the question can be asked: How should we translate these results into clinical practice? For primary prevention, the prudent and practical advice is to recommend at least one to two fish/seafood servings per week, which is consistent with current dietary guidelines. Following this recommendation would improve omega-3 intake and status in most individuals but would likely not be sufficient to reach an intake of 1 g/d of omega-3 fatty acids, a level that provides significant CV benefit for many patients. A higher dose of omega-3 fatty acids (approximately 4 g g/d of EPA and likely 4 g/d of EPA+DHA, as well) is also an effective adjunct for CV treatment in those with high TG who take statins. Finally, measuring the patient’s omega-3 status (eg, with the O3I) can monitor whether the patient’s plan of care is efficacious in achieving protective omega-3 blood levels.

KEY POINTS

  • Clinical trial results released in the past 12 months have demonstrated clear benefits of omega-3 fatty acid intake for cardiovascular disease risk, with significant reductions inthe risk of heart attacks, other major cardiovascular events, and cardiovascular disease death.
  • The mixed results regarding the effects of omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the primary and secondary prevention of cardiovascular disease from previous studies may be due in part to methodological limitations, such as using composite end points, a short intervention duration, low omega-3 fatty acid supplementation dose, and high background fish intake.
  • Based on results from REDUCE-IT, the addition of 4 g/d of EPA should be considered for statin-treated patients who have cardiovascular disease or diabetes and elevated triglycerides.
  • For clinical practice, evidence from the most recent clinical trials supports the recommendation to consume at least one to two servings of fish/seafood per week, with additional primary prevention benefits conferred by consuming ~1 g/d of EPA and DHA.
Conflict of Interest Disclosure

Kristina Harris Jackson is an employee and shareholder and William Harris is the founder and CSO of OmegaQuant Analytics, LLC.

RELATED ARTICLES

Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment

Anusha Sunkara, M.D.

Sunkara A, Raizner A. Supplemental Vitamins and Minerals for Cardiovascular Disease Prevention and Treatment. Methodist DeBakey Cardiovasc J. 2019;15(3):179-84.

Coenzyme Q10

Albert Raizner

Raizner A. Conezyme Q10. Methodist DeBakey Cardiovasc J. 2019;15(3):185-91.

Red Yeast Rice for Hypercholesterolemia

Arrigo F.G. Cicero, M.D., Ph.D.

Cicero AFG, Fogacci F, Banach M. Red Yeast Rice for Hypercholesterolemia. Methodist DeBakey Cardiovasc J. 2019;15(3):192-9.

Add Comments

Please login to dialogue with author.

Comments