Traditional metabolic therapies addressing hyperglycemia have had limited long-term outcome benefit. Now, new therapeutic options are emerging based on increased understanding of the molecular mechanisms underlying energy depletion. Metabolic cardiac imaging combined with laboratory diagnostics could guide the design of individual therapeutic strategies. To date, agents that show benefit in select individuals include mimetics that stimulate glucagon-like peptide-1, inhibitors of sodium-glucose cotransporter receptors, drugs that limit fatty acid oxidation, and hormonal therapy in select individuals. This review will summarize mechanisms and investigations related to these metabolic approaches to heart failure.

" /> Traditional metabolic therapies addressing hyperglycemia have had limited long-term outcome benefit. Now, new therapeutic options are emerging based on increased understanding of the molecular mechanisms underlying energy depletion. Metabolic cardiac imaging combined with laboratory diagnostics could guide the design of individual therapeutic strategies. To date, agents that show benefit in select individuals include mimetics that stimulate glucagon-like peptide-1, inhibitors of sodium-glucose cotransporter receptors, drugs that limit fatty acid oxidation, and hormonal therapy in select individuals. This review will summarize mechanisms and investigations related to these metabolic approaches to heart failure.

"> Article Abstract – Methodist Journal
Methodist Journal

FEATURED GUEST EDITOR

ISSUE INTRO

The Scourge of Cardiogenic Shock

See More
RECOGNITIONS

Arvind Bhimaraj, MD, MPH, Guides Issue on Cardiogenic Shock

See More

REVIEW ARTICLES See More

Pathophysiology and Advanced Hemodynamic Assessment of Cardiogenic Shock

Cardiogenic Shock in the Setting of Acute Myocardial Infarction

Cardiogenic Shock in Patients with Advanced Chronic Heart Failure

Acute Mechanical Circulatory Support for Cardiogenic Shock

Management of Cardiogenic Shock in a Cardiac Intensive Care Unit

Physiological Concepts of Cardiogenic Shock Using Pressure-Volume Loop Simulations: A Case-Based Review

Systems of Care in Cardiogenic Shock

Cardiogenic Shock in Perioperative and Intraoperative Settings: A Team Approach

CASE REPORTS See More

Repair of Extent III Thoracoabdominal Aneurysm in the Presence of Aortoiliac Occlusion

Williams-Beuren Syndrome: The Role of Cardiac CT in Diagnosis

A Rare Case of Pancreatitis-Induced Thrombosis of the Aorta and Superior Mesenteric Artery

Anomalous Origin of the Right Coronary Artery from the Left Main Coronary Artery in the Setting of Critical Bicuspid Aortic Valve Stenosis

MUSEUM OF HMH MULTIMODALITY IMAGING CENTER See More

A T2-Weighty Discovery: Aortitis on Cardiac MRI with Histopathologic Correlation

CLINICAL PERSPECTIVES See More

POINTS TO REMEMBER

Acute Kidney Injury in Cardiogenic Shock

EXCERPTA

Cardio-Oncology, Then and Now: An Interview with Barry Trachtenberg

POINTS TO REMEMBER

Onconephrology: An Evolving Field

POINTS TO REMEMBER

Herbal Nephropathy

EDITORIALS

Letter to the Editor in Response to “Cardiac Autonomic Neuropathy in Diabetes Mellitus”

Vol 13, Issue 1 (2017)

Article Abstract

Metabolic Recovery of the Failing Heart: Emerging Therapeutic Options


Article Citation:

Hamilton DJ. Metabolic Recovery of the Failing Heart: Emerging Therapeutic Options. Methodist DeBakey Cardiovasc J. 2017;13(1):25-28.

doi: https://doi.org/10.14797/mdcj-13-1-25

Abstract

Heart failure has mortality rates that parallel those of breast cancer. Current management strategies include neurohormonal blockade, rate control measures, natriuretic peptide preservation, implantation of mechanical assist devices, and heart transplantation. Despite these strategies, however, the failing myocardium remains energy depleted. New strategies to promote metabolic recovery are being developed to potentially augment current treatment guidelines. For example, an unexpected finding of our own studies showed that mechanical unloading with assist devices in advanced-stage heart failure restored metabolic flux. Unfortunately, at that point it is too late for myocardial recovery.

Traditional metabolic therapies addressing hyperglycemia have had limited long-term outcome benefit. Now, new therapeutic options are emerging based on increased understanding of the molecular mechanisms underlying energy depletion. Metabolic cardiac imaging combined with laboratory diagnostics could guide the design of individual therapeutic strategies. To date, agents that show benefit in select individuals include mimetics that stimulate glucagon-like peptide-1, inhibitors of sodium-glucose cotransporter receptors, drugs that limit fatty acid oxidation, and hormonal therapy in select individuals. This review will summarize mechanisms and investigations related to these metabolic approaches to heart failure.

Keywords
metabolic management , heart failure , energy recovery