Methodist Journal

IN THIS ISSUE

Venous Interventions

Vol 14, Issue 3 (2018)


FEATURED GUEST EDITOR

ISSUE INTRO

It’s Time We Reassess Our Primitive Understanding of the Venous System

See More
RECOGNITIONS

Jean Bismuth Spearheads Issue on Venous Interventions

See More

REVIEW ARTICLES See More

Central Venous Pathologies: Treatments and Economic Impact

Venous Thrombosis and Post-Thrombotic Syndrome: From Novel Biomarkers to Biology

Mechanical Properties of Diseased Veins

Use of Computed Tomography and Magnetic Resonance Imaging in Central Venous Disease

Application of Intravascular Ultrasound in End-Stage Renal Patients with Central Venous Occlusive Disease

Intraoperative Imaging and Image Fusion for Venous Interventions

Endovascular Treatment for Venous Diseases: Where are the Venous Stents?

Endovascular Therapy for Central Venous Thrombosis

CASE REPORTS See More

Immune Checkpoint Inhibitor Related Cardiotoxicity

Tyrosine Kinase Inhibitor-Induced Acute Myocarditis, Myositis, and Cardiogenic Shock

Primary Nonbacterial Thrombotic Endocarditis Presenting with Bowel Infarction Secondary to Superior Mesenteric Artery Embolism

Persistent Left Superior Vena Cava with Absent Right Superior Vena Cava

MUSEUM OF HMH MULTIMODALITY IMAGING CENTER See More

Incision and Drainage of a Forgotten Vascular Graft

CLINICAL PERSPECTIVES See More

EXCERPTA

Telemedicine Shakes Up the ICU Experience

POINTS TO REMEMBER

Venous Thrombosis in Nephrotic Syndrome

EXCERPTA

Heartsick: Medical and Ethical Challenges of Infective Endocarditis in the Opioid Epidemic

EXCERPTA

Redefining “Worth It” for CTO PCI

EDITORIALS

Letter to the Editor

Vol 14, Issue 3 (2018)

Article Abstract

Endovascular Treatment for Venous Diseases: Where are the Venous Stents?


Article Citation:

Schwein A, Georg Y, Lejay, A, Nicolini P, Hartung O, Contassot D, Thaveau F, Heim F, Chakfe N. Endovascular Treatment for Venous Diseases: Where are the Venous Stents? Methodist DeBakey Cardiovasc J. 2018;14(3):208-213.

doi:

Abstract

There is a growing need for dedicated endovascular devices to treat pathologies affecting the venous system. However, because of a lack of research into venous diseases and treatments, the optimal design, material, and mechanical properties of venous stents remain unknown.

Development of the ideal venous stent should be based on a thorough understanding of the underlying venous pathology. There are multiple venous diseases that differ from each other depending on their location (iliocaval, superior vena cava), mechanism (thrombotic versus non-thrombotic lesions), and chronicity. Thus, it is likely that stent material, design, and features should differ according to each underlying disease.

From a mechanical point of view, the success of a venous stent hinges on its ability to resist crushing (which requires high global and local radial rigidity) and to match with the compliant implant environment (which requires high flexibility). Device oversizing, textile coverage, and drug coating are additional features that should be considered in the context of venous diseases rather than directly translated from the arterial world.

This review examines the unique forces affecting venous stents, the problems with using arterial devices to treat venous pathologies, preliminary results of a study comparing crush resistance of commercially available laser-cut stents with a novel braided stent design, and its applicability to venous interventions.

Keywords
venous disease , endovascular treatment , stent